Ref No:

< SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU>

COURSE PLAN

Academic Year 2019-20

Program:	B E – Mechanical Engineering
Semester :	3
Course Code:	18ME33
Course Title:	Basic Thermodynamics
Credit / L-T-P:	4 / 3-0-0
Total Contact Hours:	50
Course Plan Author:	B.M.Krishne Gowda

Academic Evaluation and Monitoring Cell

< #29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315>

<http://www.skit.org.in: skit1princi@gmail.com: >

Table of Contents

18ME33: BASIC THERMODYNAMICS	3	
A. COURSE INFORMATION	3	
1. Course Overview		3
2. Course Content		3
3. Course Material		5
4. Course Prerequisites		5
5. Content for Placement, Profession, HE and GATE		6
B. OBE PARAMETERS	6	
1. Course Outcomes		6
2. Course Applications		7
3. Mapping And Justification	•••••	7
4. Articulation Matrix	•••••	8
5. Curricular Gap and Content	•••••	9
6. Content Beyond Syllabus	•••••	9
C. COURSE ASSESSMENT	10	
1. Course Coverage	•••••	10
2. Continuous Internal Assessment (CIA)	•••••	10
D1. TEACHING PLAN - 1	10)
Module - 1	•••••	10
Module – 2	•••••	.11
E1. CIA EXAM – 1	13	
a. Model Question Paper - 1	•••••	13
b. Assignment -1	•••••	13
D2. TEACHING PLAN - 2	16)
Module – 3	•••••	16
Module – 4	•••••	17
E2. CIA EXAM – 2	18	
a. Model Question Paper - 2	•••••	18
b. Assignment – 2	•••••	19
D3. TEACHING PLAN - 3	21	
Module – 5	•••••	21
E3. CIA EXAM – 3	23	
a. Model Question Paper - 3		23
b. Assignment – 3	•••••	23
F. EXAM PREPARATION	26)
1. University Model Question Paper		26
2. SEE Important Questions	•••••	27
G. Content to Course Outcomes	29)
1. TLPA Parameters		29
2. Concepts and Outcomes:		30

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

18ME33: BASIC THERMODYNAMICS A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Semester:	3	Academic Year:	2019-20
Course Title:	Basic Thermodynamics	Course Code:	18ME33
Credit / L-T-P:	4 / 3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	B.M.KRISHNE GOWDA	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target: 80 %	SEE Target:	70.00%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

	odule Blooms
ule g Hours Concept	s Learning
	Levels
¹ Fundamental Concepts & Definitions: 10 Thermodyr	namic L3
Thermodynamic definition and scope, Microscopic and system a	and Apply
Macroscopic approaches. Some practical applications of Temperat	ure
engineering thermodynamic Systems, Characteristics of Scales	\$
system boundary and control surface, examples.	
Thermodynamic properties; Definition and units,	
intensive, extensive properties, specific properties,	
pressure, specific volume. Thermodynamic state, state	
point, state diagram, path and process, quasi-static	
process, cyclic and non-cyclic; processes. Thermodynamic	
equilibrium; definition mechanical equilibrium;	
Diathermic wall, thermal equilibrium, chemical	
equilibrium, Zeroth law of thermodynamics. Temperature;	
concepts, scales, international fixed points and	
Measurement of temperature. Constant volume gas	
Thermometer, constant pressure gas thermometer, mercury	
in glass thermometer & Numerical problems.	
² Work and Heat: Mechanics, definition of work and its 10 Conservati	on of L3
limitations. Thermodynamic definition of work: energy a	and Apply
Examples, sign Convention, Displacement work; as a part Energy	V II J
of a system boundary, as a whole of a system boundary.	on
Expressions for displacement work in various processes	-
through p-v diagrams. Shaft work: Electrical work. Other	
types of work. Heat: definition, units and sign convention.	
Numerical problems	
First Law of Thermodynamics:	
Joules experiments, equivalence of heat and work.	
Statement of the First law of thermodynamics extension	
of the First law to non - cyclic processes, energy, energy as	
a property, modes of energy	

	Extension of the First law to control volume; steady flow energy equation (SFEE), important applications.			
3	Second Law of Thermodynamics: Limitations of first	10	Nature of	L3
	law of thermodynamics Devices converting heat to work;		thermodynamic processes and	Apply
	Thermal reservoir. Direct heat engine: schematic		Thermodynamic	
	representation and efficiency. Devices converting work to		system	
	heat in a thermodynamic cycle; reversed heat engine,		properties	
	schematic representation, coefficients of performance.			
	Kelvin-Planck statement of the Second law of			
	Thermodynamics; PMM I and PMM II, Clausius			
	statement of Second law of Thermodynamics. Equivalence			
	of the two statements; Carnot cycle, Carnot principles.			
	Entropy: Clausius inequality Statement, proof			
	Entropy- definition a property changes of entropy			
	entropy as a quantitative test for irreversibility. Principle			
	of increase in entropy, entropy as a coordinate.			
	Numerical problems.			
4	Availability, Ir-reversibility and General	10	Thermodynamic	L3
	Thermodynamic relations: Introduction, Availability		relations and	Apply
	(Energy), Unavailable energy, Relation between increase		Properties of	
	in unavailable energy and increase in entropy. Maximum		substance	
	work, maximum useful work for a system & control			
	volume, Ir-reversibility, second law efficiency. Numerical			
	problems.			
	Pure Substances: P-1 and P-V diagrams, triple point and			
	of saturated liquid an water ad vapor, saturated liquid, mixture			
	superheated vapor states of pure substance withs example			
	Enthalpy of change of phase (Latent heat) Dryness			
	fraction (quality), T-S and H-S diagrams, representation of			
	various processes on these diagrams. Steam tables and its			
	use. Throttling calorimeter, separating and throttling			
	calorimeter. Numerical problems.			
5	Ideal gases:	10	Ideal gas	L3
	Ideal gas mixtures, Daltons law of partial pressures.		properties and	Apply
	Amagat's law of additive volumes. Evaluation of		Real gas	
	properties of perfect and ideal gases. Air- Water mixtures		properties	
	and related properties. Numerical problems.			
	Keal gases -infroduction, van-der wall's equation of state, Van der Wall's constants in forms of aritical properties			
	Reattie-Bridgeman equation I aw of corresponding states			
	compressibility factor compressibility chart Difference			
	between ideal and real gases and Numerical problems			
-	Total	50		-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Module	Details	Chapters	Availability
S	Taxt hasks (Title Authons Edition Dublisher Veen)	IN DOOK	
A 1234	Fundamentals of thermodynamic sixth adition by Sonnotag	-	- In Lib/In
5	Borgnakke and Van Wylen	1, 2 3, 3	dent Lib
1234	Thermal Engg by Domkundawar	1 2 4 5	In Lib/In
5	Thermai Lingg, by Domkundawai	1, 2, 4,3	dont Lib
			dept.LID
D	Defense heats (Title Authons Edition Publisher Veen)		
D	Design and applied thermodynamic Second edition by DV NAC	-	- In Lib
5	basic and applied mermodynamic, Second edition by P.K.NAO	1, 2, 2, 4, 5	III LIU.
1234	The man demonstrate has Dressen as Kaumon	3,4,3	
1,2,3,4,	i nermodynamics by Prasanna Kumar	1, 2, 2, 4, 5	In L10.
C		3,4,5	
	Concept videos or Simulation for Understanding	-	-
	https://freevideolectures.com/course/2681/basic-thermodynamics		
C2	https://nptel.ac.in/courses/112105123/		
C3	https://nptel.ac.in/courses/112105266/		
C4	https://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-		
	statistical-mechanics-of-particles-fall-2013/video-lectures/lecture-1-		
	thermodynamics-part-1/		
C5	https://www.btechguru.com/GATEmechanical-engineering		
	thermodynamics-video-lecture23194.html		
C6	http://web.sbu.edu/physics/courses/Physics-304.doc		
D	Software Tools for Design	-	-
	CFDFluent		
Е	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://www3.nd.edu/~powers/ame.20231/notes.pdf		
2	https://www.cpp.edu/~pbsiegel/supnotes/nts1323.pdf		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Modu	Course	Course Name	Topic / Description		Remarks	Blooms
les	Code					Level
1	17PHY1	Physics	1. Applications of Physics laws	Ι		
	2					
	17MAT1	Mathematic	2. Application of simple	Ι	Plan Gap Course	
	1		Mathematic elements like		_	
			integration and differentiation.			

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

1.0.00		eos, 2 aj am		
Modu	Topic / Description	Area	Remarks	Blooms
les				Level

1	17PHY12	Physics	1. Applications of Physics laws I
2	17MAT11	Mathematic	2. Application of simple I
			Mathematic elements like
			integration and differentiation.

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Modu	Course	Course Outcome	Teach.	Concept	Instr	Assessment	Blooms'
les	Code.#	At the end of the course, student	Hours		Method	Method	Level
1	18MF331	should be able to Understand the thermodynamic	4	Thormodyn	Lecture	Assignmen	1.2
1	101011233.1	onderstand the thermodynamic	-	mia avatam	Lecture	t. Unit Test	L2 Understand
		systems and properties.		anne system		& CIE	Understand
1	18ME33.2	Apply the above concepts to	6	Energy	Lecture	Assignmen	L3
		solve engineering problems.		conversion		t, Unit Test & CIE	Apply
2	18ME33.3	State the first law of	4	Conservatio	Lecture	Assignmen	L3
		thermodynamic system. write an		n of energy		t, Unit Test	Apply
		expression for SFE Equation.				& CIE	
2	18ME33.4	Interpret the energy interaction.	6	Energy	Lecture	Assignmen	L3
				interaction		t, Unit Test	Apply
3	18ME33.5	Develop the nature of	4	Nature of	Lecture	Assignmen	L3
		thermodynamic process.		thermodyna		t, Unit Test	Apply
		5 1		mic		& CIE	11 5
				processes			
3	18ME33.6	Illustrate the thermodynamic	6	Thermodyn	Lecture	Assignmen	L3
		properties.		amic system		t, Unit Test	Apply
				properties		& CIE	
4	18ME33.7	Apply the thermodynamic	5	Thermodyn	Lecture	Assignmen	L3
		relations.		amic		t, Unit Test	Apply
				relations		a CIE	
4	18ME33.8	Interpret the behavior of pure	5	Properties	Lecture	Assignmen	L3
		substance.		of substance		t, Unit Test	Apply
5	18ME33.9	Calculate thermodynamic	5	Ideal gas	Lecture	Assignmen	L3
		properties of real gases at all		properties		t, Unit Test	Apply
		ranges of pressure and		I I I I I I		, & CIE	11 5
		temperature.					
5	18ME33.10	Calculate the thermodynamic	5	Real gas	Lecture	Assignmen	L3
		properties of real gases at all		properties		t unit test&	Apply
		ranges of pressure and				CIE	
		temperature using modified					
		equation.					
-	-	Total	50		-	-	L2-L2

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learning's to . . .

-			
Modu	Application Area	CO	Level
les	Compiled from Module Applications.		
1	Thermodynamics system is a major part in the design field.	CO1	L2

2	Automobile, Locomotives, Ships, Submarines and Aircraft.	CO2	
3	Power generating plants.	CO3	L2
4	Energy interactions with atmosphere and with the earth surface play a vital role	CO4	L3
	in Remote sensing.		
5	It is used extensively in the discussion of heat engines.	CO5	L2
6	Thermodynamic properties based applications are refrigerator, the humidifier,	CO6	L3
	the pressure cooker, the water heater.		
7	Thermodynamic relation are used in thermal power plants.	CO7	L3
8	Air conditioning systems, the refrigerator, the humidifier etc	CO8	L3
9	Breathing Mechanics Breathing involves pressure differences between the	CO9	L3
	inside of the lungs and the air outside.		

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mo	Mo Mapping		Mapping	Justification for each CO-PO pair	Lev
dule			Level		el
S	00	DO		(A	
-	$\frac{0}{0}$		•	Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	- T 1
1	COI	POI		Knowledge of engineering science is required to understand the	LI
1	001	DOA	1	thermodynamic properties.	1.0
1	COI	PO2	Z	Analyzing the different mechanisms in thermodynamic properties.	L3
1	CO1	PO3	3	Different process knowledge is required to design the solution.	L2
	CO2	PO1		Applying the basic thermodynamic properties to solve the engineering	L3
1			1	problems.	
1	CO2	PO2	2	Analise the basic fundamental properties	L3
	CO3	PO1		Knowledge of engineering science to understand the first law of	L2
1			3	thermodynamics.	
2	CO3	PO2	1	Analyzing first law of thermodynamics in different process.	L3
	CO4	PO1	2	Knowledge of energy science is required to understand energy	L2
2				interactions.	
2	CO4	PO2	3	Analyzing the different energy interactions in the system.	L3
	CO5	PO1	1	Knowledge of basic concepts of engineering fundamentals is required	L3
3				to develop the nature of thermodynamic process.	
3	CO5	PO2	2	Analiese the different thermodynamic processes.	L3
	CO6	PO1		Knowledge of thermodynamic properties is required to understand	L2
3			3	thermodynamic relations.	
	CO6	PO2	1	Analyzing the thermodynamic relations to different thermodynamic	L3
3		-		properties	
-	CO7	PO1		Knowledge of basic non conventional energy is required to	L2
4			2	understand the tidal and wave energy.	
	CO7	PO2	-	Analyzing the problems in the different forms of wind and tidal	L3
4	001	101	3	energy.	20
	CO8	PO1	5	Knowledge of basic science is required to understand the behavior of	L2
4	000	101	3	pure substance of water	
	CO8	PO2	1	Analyzing the behavior of water with different states	13
+	C00	PO1	1	Knowledge of basic engineering fundamentals required to	12
5	00)	101	n	understand the concepts of fuel cell	
5	$C \cap 0$	PO2	2	Analyzing the different fuel cell principles	13
3	$\frac{009}{0010}$	PO1	3	Knowledge of basic properties of any is required to understand the	
_		PUI		Knowledge of basic properties of gas is required to understand the	ட்
5			1	concepts of denavior of gases in different ranges.	

5 CO10 PO2 2 Analyzing the different thermodynamic properties of different gases.. L3

4. Articulation Matrix

CO -	PO	Mapping	with	mapping	level	for ea	ch CO	-PO r	bair.	with	course average attain	nment.
CO	10	mapping	vv I tIII	mapping	10,001	101 Cu		IOF	Jun,	**1111	course average attain	micnit.

00		with mapping iever for each co rop	un,	WILLII		1100	uve	ruge	un		ient	•						
-	-	Course Outcomes						Prog	gran	n Oi	itco	mes	28					-
Modu	CO.#	At the end of the course student	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
les		should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	O 2	03	el
1	18ME33.1	Understand the thermodynamic	\sim		-	-	-	-	-	-	-	-	-	-	-	-	-	L2
		systems and properties.																
1	18ME33.2	Apply the above concepts to			-	-	-	-	-	-	-	-	-	-	-	-	-	L3
		solve engineering problems.																
2	18ME33.3	State the first law of			-	-	-	-	-	-	-	-	-	-	-	-	-	L2
		thermodynamic system. write	5															
		an expression for SFE	,															
		Equation.																
2	18ME33.4	Interpret the energy interaction.			-	-	-	-	-	-	-	-	-	-	-	-	-	L3
3	18ME33.5	Develop the nature of			-	-	-	-	-	-	-	-	-	-	-	-	-	L3
		thermodynamic process.																
3	18ME33.6	Illustrate the thermodynamic			-	-	-	-	-	-	-	-	-	_	-	-	-	L3
		properties.																
4	18ME33.7	Apply the thermodynamic			-	-	-	-	-	-	-	-	-	_	-	-	-	L3
		relations.																
4	18ME33.8	Interpret the behavior of pure			-	-	-	-	-	-	-	-	-	-	-	-	-	
		substance.																L3
5	18ME33.9	Calculate thermodynamic			-	-	-	-	-	-	-	-	-	_	-	-	-	L3
		properties of real gases at all																
		ranges of pressure and	-															
		temperature.																
5	18ME33.	Calculate the thermodynamic			-	-	-	-	-	-	-	-	-	_	-	-	-	L3
	10	properties of real gases at all																
		ranges of pressure and	-															
		temperature using modified	-															
		equation.																
-	17ME53	Average attainment (1, 2, or 3)																
-	PO, PSO	1.Engineering Knowledge; 2.Problem	ı Ar	ialy.	sis;	3.D	esig	gn /	De	velo	рте	ent c	of S	olut	ions	s; 4.	Cor	ıduct
		Investigations of Complex Problen	ıs;	5.M	lode	rn	Тоо	$l \ U$	sag	e;	6.TI	he l	Eng	inee	er a	ınd	Soc	ciety;
		7.Environment and Sustainability;	8. <i>Et</i>	thics	; 9	.Ind	livid	lual	an	d T	eam	iwor	·k;	10.0	Con	าทนเ	nica	tion;
		11.Project Management and Finance	e; 1	2.Li	fe-la	ong	Lea	ırnir	ıg;	<i>S1.5</i>	Softv	vare	e En	ıgin	eeri	ng;	<i>S</i> 2.	Data
		Base Management; S3.Web Design																

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Modu	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les					
2,3,4	Application of	Seminar			po3
	Turbomachines				

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Modu	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les						
1	Automated machine	Placement,	Presentation	17 th May 2019	Mr. Hanumatharaju,	PO1
	tools	GATE,			Dynamatic Industries	
		Higher				
		Study,				
		Entrepreneur				
		ship.				

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. o	of quest	ion in I	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Fundamental Concepts &	10	2	-	-	1	1	2	CO1,	L2,3
	Definitions								CO2	
2	work & Heat & First Law of	10	2	-	-	1	1	2	CO3,	L3
	Thermodynamics								CO4	
3	Second Law of Thermodynamic	10	-	2	-	1	1	2	CO5, CO6	L3
	and Entropy									
4	Availability, Ir-reversibility and	10	-	2	-	1	1	2	CO7, C08	L3
	General Thermodynamic									
	relations									
5	Ideal gases and Real gases	10	-	-	4	1	1	2	CO9,	L3
	_								CO10	
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2, CO3,Co4	L2,L3,L2,L3
3, 4	CIA Exam – 2	30	CO7, C08, CO9, CO10	L2,L3,L2,L3
5	CIA Exam – 3	30	CO5, CO6,	L2,L2
1, 2	Assignment - 1	10	CO1, CO2, CO3,Co4	L2,L2,L2,L2
3, 4	Assignment - 2	10	CO7, C08, CO9, CO10	L2,L2,L2,L3
5	Assignment - 3	10	CO5, CO6,	L2,L3
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		_	-
5	Quiz - 3		-	-

1 - 5 Other Activities – Mini Project	-	CO9, CO10	L2,L3
Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Fundamental Concepts & Definitions	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	The student should be able to:	CO1	L2
1	Understand the thermodynamic systems and properties.	CO1	L2
2	Apply the above concepts to solve engineering problems.	CO2	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
l	Thermodynamic definitions	C01	L2
2	Thermodynamic properties	C01	L2
3	Thermodynamic equilibrium;	C01	L2
4	Definition mechanical equilibrium.	C01	L2
5	Zeroth law of thermodynamics.	C01	L2
6	Temperature; concepts, scales,	CO2	L3
7	International fixed points	CO2	L3
8	Measurement of temperature.	CO2	L3
9	Numerical problems.	CO2	L3
10	Numerical problems.		
с	Application Areas	CO	Level
1	Thermodynamics system is a major part in the design field.	CO1	L2
2	Automobile, Locomotives, Ships, Submarines and Aircraft.	CO2	L3
	Review Questions	-	-
1	Distinguish between Macroscopic and Microscopic approach of study.	CO1	L3
2	Intensive and Extensive properties.	CO1	L2
3	Closed, Open and Isolated systems.	CO1	L2
4	What you mean by Thermodynamic equilibrium' of a system.	CO1	L2
5	Intensive and extensive properties.	CO1	L2
6	Define thermodynamic work and heat.	CO2	L2
7	What is meant by displacement work? Explain the same with reference to	CO2	L3
	the quasi — static process.		
8	State Zeroth law of thermodynamics and e,(plain the working of constant	CO2	L3
	volume gas thermometer.		
9	hat is meant by thermodynamic equilibrium? Explain mechanical,	CO2	L3
	chemical and thermal equilibrium.		
10	Distinguish between:	CO1	L2
	I) Intensive and extensive properties.		
	ii) Microscopic and macroscopic point of view		
e	Experiences	-	-
1		CO1	L2
2			

Μ	od	ul	e –	2
	~ ~		-	_

Title:	Work and Heat & First Law of Thermodynamics	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
- 1	At the end of the topic the student should be able to	-	Level
1	State the first law of thermodynamic system, write an expression for SFE Equation.	COS	LS
2	Interpret the energy interaction	CO4	L3
		001	23
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
11	Work Mechanics, definition of work and its limitations	CO3	L3
12	Displacement work	CO3	L3
13	Shaft work; Electrical work.	CO3	L3
14	Heat; definition, units and sign convention.	CO3	L3
15	Numerical problems.	CO3	L3
16	Joules experiments, equivalence of heat and work. Statement of the First	CO4	L3
	law of thermodynamics, extension of the First law to non - cyclic		
	processes,		
17	Energy, energy as a property, modes of energy	CO4	L3
18	extension of the First law to control volume.	CO4	L3
19	Steady flow energy equation (SFEE).	CO4	L3
20	important applications and Numericals.	CO4	L3
c	Application Areas	CO	Level
-	Power generating plants.	CO3	L3
1	Energy interactions with atmosphere and with the earth surface play a vital role in Remote sensing.	CO4	L3
2			
d	Review Questions	-	-
11	Explain Joules experiments	CO3	L3
12	Explain first law of thermodynamic.	CO4	L3
	With a neat P-V diagram, derive an expression for work done during	CO3	L3
13	polytropic process (Pv ⁿ =C)		
	Derive an expression for the non-flow displacement work done during	CO4	L3
14	adiabatic process C given by $PV^y = C$, where $y = Cp/Cv$		
15	showthat heat and work are path function and not properties of the system.	CO4	L3
	A closed system undergoes two processes one after the other constant	CO3	L3
	pressure process at a pressure of 5 bar from initial volume of 0.03 m3 to		
	0.09 m3. It is followed by polytropic expansion process according to PV"		
	= C from 0.09 m3 volume to 0.2 m3 final volume. Sketch the two		
	processes on PV diagram and find (I) Final pressure after expansion.		
16	(ii) Work done during each process and net work done.		
	Write the steady flow energy equation for an open system and explain the	CO3	L3
	terms involved in it, and simplify SFEE for the following systems:		
17	(i) Steam turbine and (ii) Nozzle.		
e	Experiences	-	-
1		CO3	L2
2			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code:		18ME33 Sem: III Marks: 30 Time: 75	minutes		
Cour	se:	BASIC THERMODYNAMICS	20.1	00	
-	-	Note: Answer all questions, each carry equal marks. Module : 1, 2	Marks	$\frac{CO}{CO}$	Level
-	•	State the Zeroth Law of Thermodynamics. What is Diathermic wall		1	Level
1	a	and adiabatic wall?	-	1	L2
	h	Differentiate between the following with suitable examples:	1	1	12
	U	1 Intensive and extensive properties 2 Path and point function	-	1	L2
	C	A point wire is used as a resistance thermometer. The wire resistance	7	1	13
	C	was found to be 10 0 and 16 0 at ice point and steam point	,	1	L3
		respectively and 30 O at sulfur boiling point of 444 6° C Find the			
		resistance of the wire at 750° C if the resistance varies with the			
		temperature by the relation $R=R_0$ (1+ α t+ β t ²)			
		OR			
2	а	Obtain an expression for work done by the isothermal process.	4	2	L2
_	h	Define work and heat in terms of thermodynamics. Write two	4	2	L2
	U	important similarities between them	•	2	22
	C	A cylinder contains 1 kg of a certain fluid at an initial pressure of 20	7	2	L3
	C	bar. The fluid is allowed to expand reversibly behind a piston	,	2	23
		according to law PV^2 = constant until the volume is doubled. The fluid			
		is then cooled reversibly at constant pressure until the piston regains			
		its original position. Heat is then supplied reversibly with the piston			
		firmly locked in position until the pressure rises to the original value			
		of 20 bar. Calculate the net work done by the fluid for an initial			
		volume of 0.5m ³			
		MODULE-2			
3	a	A cinema hall of 1000 m ³ volume has a capacity to accommodate 80	8	3	L3
		persons. Each person occupies 0.075 m ³ of space and has an average			
		heat transfer rate of 600kJ/hr. On a house full day if the air			
		conditioning system fails find the increase in internal energy and			
		temperature of the air in the hall during first 15 minutes of failure.			
		Assume that the hall is well insulated with no heat flow from outside			
		and air in the room comprises the system. If the hall and its contents			
		are considered as a system, what will be the increase in internal			
		energy of the system? Take air is at 27°C and 1 bar.			
	b	Write the steady flow energy equation for an open system and explain	7	3	L2
		the terms involved in it, and simplify SFEE for the following systems:			
		(1) Steam turbine and (11) Nozzle.			
4			_	4	T 2
4	a	A Carnot retrigerator is used for removing 6270 kJ/min of heat from a	7	4	L3
		cold storage room at -20°C. Heat is discharged to the atmosphere at 25° C. Figure 1. (1) COP of a figure (2) P			
	1	25 C. Find the (1) COP of retrigerator (2) Power required	0	A	1.0
	b	Give Keivin-Planck and Clausius statements of second law of thermodynamics and prove that $(COP)_{HP}=1+COP$ of refrigerator.	8	4	L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions

Crs C	Code:	18ME3	3 Sem:	III	Marks:	5 / 10	Time:	90 - 120	minut	es
Cours	se:	BASIC	THERM	ODYNAMI	CS					
Note:	Each stu	udent to	answer 2-3	assignments. l	Each assignmen	t carries equa	l mark.	1	~ ~	1
SNo		SN ME057	DC	A	ssignment Des	cription	. 1 .	Marks	CO	Level
1	IKII	SME057	Define a	thermodyna	amic system.	Differentia	te between		COI	L2
	11771/		open sys	tem and clo	sed system			10		
2	IKII	5ME006	Define th	ne following					CO2	L3
			a. Homo	geneous and	l heterogeneo	ous system v	with example	e		
2	1171	7ME10	b. Diathe	ermic and A	diabatic wall			10	000	1.0
3	11/11/		Show that	work is path F	runction	1	1.	10	CO2	L3
4	INII	/ME104	A Certai	n thermome	ter is calibrat	ed using ice	e and steam as		COI	L3
			a fixed p	oints and de	signating the	m as OOC a	nd 1000C			
			respectiv	the seals t	$(a \ln \mathbf{Y} + \mathbf{h})$	c function c	nosen to			
			$t = (a \mathbf{V} + \mathbf{h})$	the scale t =	$(a \ln A + b), 1$	Instead of I	near scale			
			l = (aA + b)). determine	the constants	s ,, a and ,,t	o in terms of			
			Λ ice and $t = 100$ h	$\mathbf{J} \mathbf{\Lambda}$ steam as $\mathbf{n} (\Box / \mathbf{V} \mathbf{i} \mathbf{n} \mathbf{n})$	$\frac{100 \text{ show that}}{\sqrt{1 \text{ n}}}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	s given by			
			ι – 100 Π	$\Pi(\Box / \Lambda ICe)$	/(III (A staeli	1/A ICE))		10		
5	1KT17	7ME018	A conner	r block of m	ass 0 5 Kg at	1000C is n	laced in a lake	10	CO1	13
5	11111		of water	1000000111	ass 0.5 Kg at	1000C IS p	$s \cap^0 C$;	COI	LJ
			respectiv	al 10 C . Iv velv are join	ed together T	is at 100 C Take for Coi	a o c			
			C=0.393	KI/KσK	cu together. I	ake for Coj	pper	10		
6	1KT17	7ME019	Estimate t	he change in e	ntropy of the un	iverse due to	each of the	10	CO1	13
0			following	process.	intopy of the un		cuch of the	10	COI	L3
7	1KT17	7ME020	Derive a	n expressior	n for Clausius	Inequality		10	CO1	L3
8	1KT17	7ME026	Derive a	n expressior	n for entropy	changes for	r an open		CO1	L3
			system d	erive an exp	pression for e	ntropy char	nges for an			
			open sys	tem				10		
9	1KT18	8ME005	Derive a	n expressior	n for a closed	system und	lergoing a			
			cycle					10		
10	1KT18	8ME005	Show that	of all heat eng	ine operating be	etween a give	n constant		CO2	L3
			temperatur	re source and a	a given constant	temperature s	sink, none has a	10		
11	1KT18	8ME006	Explain th	e working Prir	cipal of Carnot	cvcle.		10	CO^2	13
12	1KT18	8ME007	Derive an	expression for	steady flow end	ergy equation	for the controlled	10	CO^2	13
			Volume.	r				10	002	L3
13	1KT18	8ME008	Air at 1.02	2 bar, 220C, ini	itially occupying	g a cylinder v	olume of 0.015		CO2	L3
			m3, is con	pressed revers	sibly and adiaba	tically by a pi	iston to a pressur	e		
			The work	done on the m	ass of air in the	cvlinder.	iai voiume, m)	10		
14	1KT18	8ME009	Show that	work is path F	Function	-)		10	CO1	L3
15	1KT18	8ME011	A closed s	ystem undergo	es a constant vo	olume process	s in which 85 kJ		CO2	L3
			of heat is s	supplied to it.	The system then	undergoes a	constant pressure			_
			process in	which 90 kJ o	f heat is rejected	d by the system	m and 15 kJ of			
			state by a 1	reversible adia	batic process Γ	brought back Determine i) T	to its original he magnitude and	1		
			direction of	of work transfe	r during the adi	abatic process	s. ii) The energy	•		
			of the systemeters of the system	em at all end s	tates if the energy	gy at the initia	al state is 100 kJ.	10		
16	1KT18	8ME012	A mercu	iry manome	eter is used	to measure	pressure_in	a	CO2	L3
			water pi	pe. If the d	ensity of me	rcury is 13	590 kg/m ³ and	b		
			the mano	ometer heigl	nt is 300 mm	determine	the pressure in	n		
L			the pipel	ine.				10		
17	1KT18	SME014	With the	aid of appr	opriate sketc	hes discuss	the concept of	f	CO1	L2
			thermody	ynamic syste	ems.			10		

	18	1KT18ME016	Explain state, path, Process and cycle.	10	CO1	L2
ĺ	19	1KT18ME017	Write a brief note on reversible process and quasi-static		CO2	L3
			process.	10		
ĺ	20	1KT18ME018	Explain mechanical, chemical and thermal equilibrium.	10	CO1	L2
ĺ	21	1KT17ME027	Explain what you understand by thermodynamic		CO2	L3
			equilibrium.	10		
	22	1KT17ME028	Distinguish between the terms Change of state, Path and		CO1	L2
			process.	10		
	23	1KT17ME029	What is the differences between a closed system and open		CO2	L3
			system.	10		
	24	1KT17ME031	An open system defined for ab fixed region and a control		CO1	L2
			volume are synonymous. Explain.	10		
	25	1KT17ME032	Why to study Thermodynamic explain with examples	10	CO2	L3
	26	1KT17ME034	which of the following processes would it be more		CO3	L2
			appropriate to consider a closed system rather than a			
			control volume?			
			1)Steady flow discharge of steam from a nozzle			
			2)Freezing a given mass of water			
			3)Stirring of air contained in a rigid tank using a			
			mechanical agitator			
			4)Expansion of air contained in a piston and cylinder			
			device Heating of a metal bar in a furnace			
			lixing of high pressure and low pressure air initially			
			contained in two separate tanks connected by a pipe and			
			valve.	10		
	27	1KT17ME035	Must the boundary of a system be real? Can the boundary	10	CO2	L3
			of a system be movable?	10	001	20
	28	1KT17ME036	Convert 560 F to degree of Rankine, degree of Kelvin, and	10	CO1	L2
			degree of Centigrade.	10		
ĺ	29	1KT18ME401	ich of the following are properties of a system: pressure,		CO2	L3
			temperature, density, energy, work, heat, volume, specific			
			heat, and power? List at least three measurable properties			
			of a system	10		
	30	1KT18ME402	a closed system interact mass with its surroundings?	10	CO1	L2
+	31	1KT18ME403	term Tds is the area under the process on a T-s diagram	10	CO^{2}	L3
			How do you interpret this area	10	202	
	32	1KT18MF404	now do you interpret this area.	10	CO2	1.2
	54	1111100012404	is a not system describe a high value of heat, or a high		002	LZ
	22	11/101/10/405	value of temperature of the system?	10	G Q	
	33	1K118ME405	An inventor claims to have developed a work-producing		CO ₂	L3
			closed system cycle which receives 2000 kJ of heat from a			
			heat source and rejects 800 kJ of heat to a heat sink. It			
			produces a net work of 1200 kJ. How do we evaluate his			
			claim?	10		
ľ	34	1KT18ME406	m^3 rigid tank contains a quality 0.05745 steam (0.05 m^3 of		CO2	L2
			saturated liquid water and 4.95 m ³ of saturated water			
			vapor) at 0.1 Mpa. Heat is transferred until the pressure			
			reaches 150 kPa. Determine the initial amount of water in			
			added to the system	10		
1				10	1	

35	1KT18ME407	kg of helium is compressed in a polytropic process $(pv^{1.3}=constant)$. The initial pressure, temperature and volume are 620 kPa, 715.4 K and 0.15 m ³ . The final volume is 0.1 m ³ . Find (A) the final temperature and pressure, (B) the work done, and (C) the heat interaction.	10	CO2	L3
36	1KT18ME408	at is the boundary work of an open system?	10	CO2	L2
		ich of the following are properties of a system: pressure,		CO4	L3
		temperature, density, energy, work, heat, volume, specific			
		heat, and power? List at least three measurable properties			
		of a system.	10		
		a closed system interact mass with its surroundings?	10	CO3	L2
		term JTds is the area under the process on a T-s diagram.		CO3	L3
		How do you interpret this area.	10		
		es a hot system describe a high value of heat, or a high		CO3	L2
		value of temperature of the system?	10		
		ich of the following are properties of a system: pressure,		CO4	L3
		temperature, density, energy, work, heat, volume, specific			
		heat, and power? List at least three measurable properties			
		of a system.	10		
		a closed system interact mass with its surroundings?	10	CO4	L2
		term ∫Tds is the area under the process on a T-s diagram.		CO3	L3
		How do you interpret this area.	10		
		s a hot system describe a high value of heat, or a high	10	CO4	L3
		value of temperature of the system?			

D2. TEACHING PLAN - 2

Module – 3

Title:	Second Law of Thermodynamics and Entropy	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Develop the nature of thermodynamic process.	CO5	L2
2	Illustrate the thermodynamic properties.	CO6	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
21	Second Law of Thermodynamics	CO5	L3
22	Devices converting heat to work	CO5	L3
23	Kelvin-Planck statement of the Second law of Thermodynamics;	CO5	L3
	PMM I and PMM II, Clausius statement of Second law of	CO5	L3
24	Thermodynamics.		
25	Equivalence of the two statements; Carnot cycle, Carnot principles omega	CO5	L3
26	Numerical problems.	CO5	L3
27	Entropy: definition Clausius inequality Statement- proof.	CO6	L3
28	Entropy a property, changes of entropy	CO6	L3
29	entropy as a quantitative test for Ir-reversibility	C06	L3
30	Principle of increase in entropy, entropy as a coordinate	CO6	L3
С	Application Areas	CO	Level
1	It is used extensively in the discussion of heat engines.	CO5	L3

2	Thermodynamic properties based applications are refrigerator, the humidifier, the pressure cooker, the water heater.	CO6	L3
d	Review Questions	-	-
18	Prove that internal energy is a property	CO5	L3
19	Define Reversibility & factors affecting it.	CO5	L3
20	Explain availability function for closed system (Non flow Process) and open system (Steady Flow process).	CO5	L3
	Two Carnot engines A and B are connected in series between two reservoirs maintained at 1000K and 300K respectively. Engine A receives 1750 kJ of heat from high temperature reservoir and rejects heat to the	CO5	L3
	Carnot engine B. Engine B takes in heat rejected by engine A and rejects heat to the low temperature reservoir. If Engine A and Engine B have equal thermal efficiencies determine, a) The heat rejected by engine B		
	b) The temperature at which heat rejected by engine A		
21	The work done during this process by engines A and B respectively.		
21	Definition of the thermodynamic temperature scale.	CO5	L3
	write a short notes on	CO6	L3
	a) Principal of increases in entropy &		
23	b) Mixing of two fluids		
24	Determine the entropy increase of the universe	CO6	L3
25	state Carnot theorem and explain the working principal of Carnot cycle	CO6	L3
	A fish refreezing plant requires 40 Tones of refrigeration. The freezing	CO6	L3
	temperature is 300C. If the performance of plant is 20% of the		
	theoretical reversed Carnot cycle working within the same temperature		
26	limits, calculate power required. Take 1Ton of refrigerator = 210 kJ/min		
e	Experiences	-	-
1			
2			
5			

Module – 4

Title:	Availability, Ir-reversibility and General Thermodynamic relations	Appr	10 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Apply the thermodynamic relations.	CO7	L3
2	Interpret the behavior of pure substance.	CO8	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
31	Introduction, Availability (Energy), Unavailable energy, Relation between	CO7	L3
	increase in unavailable energy and increase in entropy.		
32	Maximum work, maximum useful work for a system & control volume	CO7	L3
33	Ir-reversibility, second law efficiency	CO7	L3
34	Numerical problems	CO7	L3
35	Pure Substances: P-T and P-V diagrams, triple point and critical points	CO8	L3
36	Sub-cooled liquid, saturated liquid, mixture of saturated liquid an water ad vapor,	CO8	L3
	saturated vapor and superheated vapor states of pure substance withs example.		
37	Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-	CO8	L3
	S diagrams, representation of various processes on these diagrams.		

38	Steam tables and its use.	CO8	L3
39	Throttling calorimeter, separating and throttling calorimeter.	CO8	L3
40	Numerical problems.	CO8	L3
с	Application Areas	СО	Level
1	Thermodynamic relation are used in thermal power plants.	CO7	L3
2	Air conditioning systems, the refrigerator, the humidifier etc	CO8	L3
d	Review Questions	-	-
27	Define a reversible heat engine,	CO7	L3
	show that of all reversed heat engines working between any two constant but	CO7	L3
	different temperature thermal reservoirs, the reversible reversed heat engine will		
28	have the maximum efficiency		
	Two Carnot engines A and B are connected in series between two reservoirs	CO7	L3
	maintained at 1000K and 300K respectively. Engine A receives 1750 kJ of heat		
	from high temperature reservoir and rejects heat to the		
	Carnot engine B. Engine B takes in heat rejected by engine A and rejects heat to		
	the low temperature reservoir. If Engine A and Engine B have equal thermal		
	efficiencies determine,		
	a) The heat rejected by engine B		
	b) The temperature at which heat rejected by engine A		
29	The work done during this process by engines A and B respectively.		
30	With neat sketch explain throttling calorimeter.	CO7	L3
31	Define pure substance and state "Two property rule" & Critical point of water.	CO8	L3
	Dry saturated steam at 15bar is supplied to an engine in which it expands	CO8	L3
	isentropically to 1.5 bar and then at constant volume to 0.5 bar. Calculate the work		
32	done during the isentropic expansion and the final condition of the steam.		
33	Explain formation of pure substance.	CO8	L3
34	Explain process involve in pure substance by using P-T and P-V diagrams,	CO8	L3
35	Define triple point and critical points	CO8	L3
36	With neat sketch explain Throttling calorimeter.	CO8	L3
37	Kaplan and Propeller turbines - velocity triangles, design parameters.	CO8	L3
	A Kaplan turbine develops 9000 kW under a head of 10m. Overall efficiency of the	CO8	L3
	turbineis 85%. The speed ratio based on outer diameter is 2.2 and flow ratio 0.66.		
20	Diameter of theboss is 0.4 times the outer diameter of the runner. Determine the diameter		
-38	of the runner, boss diameter and specific speed of the runner.		
	Experiences		
е 1		-	12
2		007	L2
-			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	Code:	18ME33	Sem:	III	Marks:	30		Time:	75	minutes		
Cours	se:	BASIC TH	IERMODYNA	MICS								
-	-	Note: Ans	wer all questi	ons, each carr	y equal :	marks.				Marks	СО	Level
1	a	Explain	how free	expansion	and	friction	makes	the p	rocess	7	5	L2
		irreversil	ole.									
	b	A revers reservoir refrigerat heat eng plant (En absorbed reservoir	ible therma is at 800 ⁰ C tor operating ine is 1900 ngine and 1 by the re	I heat engi and 30 ⁰ C g between - kJ and the Refrigerator efrigerant a	ne ope respec 15 ⁰ C an netwo both) nd tot	erating b stively. In nd 30 ⁰ C. rk outpu is 290k al heat	etween drives The hea t from J. calcu transfer	two th a reve at input the com late the red to	ermal to the bined e heat $30^{\circ}C$	8	5	L3

		OR			
2	a	Prove that for a system executing a cyclic process,	7	6	L2
		ϕ dq/T \leq 0 and hence define entropy.			
	b	Water is heated from 25°C to 90°C as it flows at a rate of 0.5 Kg/s	8	6	L3
		through a tube that is immersed in a hot bath at 100°C. Calculate			
		heat transfer, Entropy change for water, oil bath and universe.			
		Assume Cpw and Cpg are 4.2 kJ/KgK.			
3	a	Show that the entropy change of an ideal gas is given by the	8	9	L2
		equation of the form $S_2-S_1 = C_p \ln (V_2/V_1) + C_v \ln (P_2/P_1)$.			
	b	A mixture of ideal gases contains 5 kg of N_2 and 8 kg of Co_2 . the			
		partial pressure of N_2 in the mixture is 120 KPa. find	7	9	L3
		1)Mole fraction of N_2 and CO_2 2)Partial pressure of Co_2			
		3)Molecular weight of mixture.			
		OR			
4	a	Explain the following:			
		1) Reduced properties 2) Law of corresponding state	8	10	L2
		3) Gibbs-Dalton law 4) Compressibility factor			
	b	A container of $3m^3$ capacity contains 10kg of Co ₂ at 27^0 C .Estimate			
		the pressure exerted by Co ₂ using 1)Perfect gas equation 2)Vander	7	10	L3
		Walls equation			

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions									
Crs	Code:	18ME3	3 Sem:	III	Marks:	5 / 10	Time:	90 - 120) minut	es
Note	Each s	tudent to a	answer 2-3 assig	nments.	Each assignment	carries equa	ıl mark.			
SNo	1	USN		1	Assignment Desci	ription		Marks	CO	Level
1	1KT	16ME057	Define a rev	ersible	heat engine,			5	CO7	L2
2	1KT	16ME006	show that of	f all re	versed heat er	igines wo	orking betwee	n 5	CO8	L3
			any two co	onstant	but differen	t temper	rature therma	al		
	reservoirs, the reversible reversed heat engine will have						re			
			the maximur	n effici	ency		-			
3	1KT	17ME10	Two Carnot	engin	es A and B a	are conne	ected in serie	es 5	CO8	L3
			between two	reser	voirs maintain	ed at 100	00K and 300	K		
			respectively.	Engin	e A receives 17	750 kJ of	heat from hig	h		
			temperature	reserv	oir and rejec	ts heat	to the Carno	ot		
			engine B. En	igine B	takes in heat i	rejected b	y engine A an	d		
			rejects heat	to the l	ow temperatur	e reservo	ir. If Engine	A		
			and Engine I	B have	equal thermal	efficienci	es determine,			
			a) The heat r	ejected	by engine B		,			
			b) The tempe	erature	at which heat	rejected b	y engine A			
			The work do	one du	ring this proce	ess by en	gines A and	В		
			respectively.		0 1	5	0			
4	1KT	17ME104	Define pure	substa	nce and state	"Two pro	operty rule" a	& 5	CO8	L3

		Critical point of water.			
5	1KT17ME018	Dry saturated steam at 15bar is supplied to an engine in	5	CO8	L3
		which it expands isentropically to 1.5 bar and then at			
		constant volume to 0.5bar. Calculate the work done			
		during the isentropic expansion and the final condition of			
6	1KT17ME010	the steam.	~	COR	1.2
0	1KT17ME019	Explain formation of pure substance.	5	C08	L3
/	TRTT/WE020	and P-V diagrams	3	008	LJ
8	1KT17ME026	Define triple point and critical points	5	CO8	L3
9	1KT18ME005	With neat sketch explain Throttling calorimeter.	5	CO8	L3
10	1KT18ME005	the entropy of a closed system ever decrease?	5	CO5	
		w many ways that the entropy of a closed system can be			
		increased?			
11	1KT18ME006	Inventor claims to have developed an adiabatic device	5	CO7	L3
		that executes a steady state expansion process in which			
		the entropy of the surroundings decreases at 5 kJ/(Ksec).			
		Is this possible? Why or why not?			
12	1KT18ME007	at is the increase of entropy principle?	5	CO8	L3
13	1KT18ME008	niverse an isolated system? What is the surroundings of	5	CO8	L3
		the universe?			
		en will the entropy value of the universe attained its			
14	1KT18ME009	maximum value?	5	C07	12
11	1111101012007	at are available and unavailable energy?	5	01	LJ
15	1KT18ME011	at is minimum temperature value of heat rejection T _L	5	CO8	L3
		which can be used in real world?			
16	1KT18ME012	Write the general mathematical expression of reversible			
		white the general manomatical expression of reversione	5	CO8	L3
		work for a closed system undergoing a change of state 1-	5	CO8	L3
		work for a closed system undergoing a change of state 1- 2.	5	CO8	L3
17	1KT18ME014	work for a closed system undergoing a change of state 1- 2. es reversible work of a closed system depend on the	5	CO8 CO7	L3 L3
17	1KT18ME014	work for a closed system undergoing a change of state 1- 2. es reversible work of a closed system depend on the surroundings of the system?	5	CO8 CO7	L3 L3
17	1KT18ME014 1KT18ME016	work for a closed system undergoing a change of state 1- 2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expande in a piston avlinder assembly from an initial	5 5 5	CO8 CO7 CO8	L3 L3 L3
17 18	1KT18ME014 1KT18ME016	work for a closed system undergoing a change of state 1- 2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa	5 5 5	CO8 CO7 CO8	L3 L3 L3
17	1KT18ME014 1KT18ME016	work for a closed system undergoing a change of state 1- 2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies and	5 5 5 5	CO8 CO7 CO8	L3 L3 L3
17	1KT18ME014 1KT18ME016	 work for a closed system undergoing a change of state 1-2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K 	5 5 5 5	CO8 CO7 CO8	L3 L3 L3
17 18 19	1KT18ME014 1KT18ME016 1KT18ME017	 work for a closed system undergoing a change of state 1-2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K ts the expression for irreversibility for a closed system 	5 5 5 5	CO8 CO7 CO8	L3 L3 L3
17 18 19	1KT18ME014 1KT18ME016 1KT18ME017	 work for a closed system undergoing a change of state 1-2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K es the expression for irreversibility for a closed system different from that of an open system? 	5 5 5 5 5	CO8 CO7 CO8 CO8	L3 L3 L3 L3
17 18 19 20	1KT18ME014 1KT18ME016 1KT18ME017 1KT18ME018	 work for a closed system undergoing a change of state 1-2. s reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K es the expression for irreversibility for a closed system different from that of an open system? air stream at 150°C and 400 kPa with mass flow rate of 	5 5 5 5 5	CO8 CO7 CO8 CO8	L3 L3 L3 L3
17 18 19 20	1KT18ME014 1KT18ME016 1KT18ME017 1KT18ME018	 work for a closed system undergoing a change of state 1-2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K es the expression for irreversibility for a closed system different from that of an open system? air stream at 150°C and 400 kPa with mass flow rate of 0.6 kg/s enters a steady-state steady-flow turbine. The 	5 5 5 5 5 5	CO8 CO7 CO8 CO8 CO7	L3 L3 L3 L3 L3
17 18 19 20	1KT18ME014 1KT18ME016 1KT18ME017 1KT18ME018	 work for a closed system undergoing a change of state 1-2. s reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K s the expression for irreversibility for a closed system different from that of an open system? air stream at 150°C and 400 kPa with mass flow rate of 0.6 kg/s enters a steady-state steady-flow turbine. The stream leaves the turbine at 60°C and 100 kPa. The 	5 5 5 5 5	CO8 CO7 CO8 CO8 CO7	L3 L3 L3 L3
17 18 19 20	1KT18ME014 1KT18ME016 1KT18ME017 1KT18ME018	 work for a closed system undergoing a change of state 1-2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K es the expression for irreversibility for a closed system different from that of an open system? air stream at 150°C and 400 kPa with mass flow rate of 0.6 kg/s enters a steady-state steady-flow turbine. The stream leaves the turbine at 60°C and 100 kPa. The turbine delivers a power of 45 kW. Determine the rate of 	5 5 5 5 5	CO8 CO7 CO8 CO8 CO7	L3 L3 L3 L3 L3
17 18 19 20	1KT18ME014 1KT18ME016 1KT18ME017 1KT18ME018	work for a closed system undergoing a change of state 1- 2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K es the expression for irreversibility for a closed system different from that of an open system? air stream at 150°C and 400 kPa with mass flow rate of 0.6 kg/s enters a steady-state steady-flow turbine. The stream leaves the turbine at 60°C and 100 kPa.The turbine delivers a power of 45 kW. Determine the rate of the heat transfer and the rate of irreversibility of the	5 5 5 5 5	CO8 CO7 CO8 CO8 CO7	L3 L3 L3 L3
17 18 19 20	1KT18ME014 1KT18ME016 1KT18ME017 1KT18ME018	work for a closed system undergoing a change of state 1- 2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K es the expression for irreversibility for a closed system different from that of an open system? air stream at 150°C and 400 kPa with mass flow rate of 0.6 kg/s enters a steady-state steady-flow turbine. The stream leaves the turbine at 60°C and 100 kPa.The turbine delivers a power of 45 kW. Determine the rate of the heat transfer and the rate of irreversibility of the process. The environment temperature is at 283 K	5 5 5 5 5	CO8 CO7 CO8 CO8 CO7	L3 L3 L3 L3
17 18 19 20 21	1KT18ME014 1KT18ME016 1KT18ME017 1KT18ME018 1KT18ME018	work for a closed system undergoing a change of state 1- 2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K es the expression for irreversibility for a closed system different from that of an open system? air stream at 150°C and 400 kPa with mass flow rate of 0.6 kg/s enters a steady-state steady-flow turbine. The stream leaves the turbine at 60°C and 100 kPa.The turbine delivers a power of 45 kW. Determine the rate of the heat transfer and the rate of irreversibility of the process. The environment temperature is at 283 K xergy a state property? Is exergy a variable at a specified	5 5 5 5 5 5	CO8 CO7 CO8 CO8 CO7	L3 L3 L3 L3 L3
17 18 19 20 21	1KT18ME014 1KT18ME016 1KT18ME017 1KT18ME018 1KT18ME018	 work for a closed system undergoing a change of state 1-2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K es the expression for irreversibility for a closed system different from that of an open system? air stream at 150°C and 400 kPa with mass flow rate of 0.6 kg/s enters a steady-state steady-flow turbine. The stream leaves the turbine at 60°C and 100 kPa. The turbine delivers a power of 45 kW. Determine the rate of the heat transfer and the rate of irreversibility of the process. The environment temperature is at 283 K xergy a state property? Is exergy a variable at a specified state? 	5 5 5 5 5 5	CO8 CO7 CO8 CO8 CO7	L3 L3 L3 L3 L3 L3
17 18 19 20 21 22	1KT18ME014 1KT18ME016 1KT18ME017 1KT18ME018 1KT18ME018 1KT17ME027 1KT17ME028	work for a closed system undergoing a change of state 1- 2. es reversible work of a closed system depend on the surroundings of the system? d the specific reversible work developed when air expands in a piston-cylinder assembly from an initial state of 500 kPa and 500 K to a final state of 200 kPa. Neglect changes in potential and kinetic energies, and assume the environment temperature is at 300 K es the expression for irreversibility for a closed system different from that of an open system? air stream at 150°C and 400 kPa with mass flow rate of 0.6 kg/s enters a steady-state steady-flow turbine. The stream leaves the turbine at 60°C and 100 kPa.The turbine delivers a power of 45 kW. Determine the rate of the heat transfer and the rate of irreversibility of the process. The environment temperature is at 283 K xergy a state property? Is exergy a variable at a specified state? es exergy of a system change when the state of the system	5 5 5 5 5 5 5 5	CO8 CO7 CO8 CO8 CO7 CO8 CO8	L3 L3 L3 L3 L3 L3 L3

23	1KT17ME029	es energy of an infinitely large heat reservoir change? Why?	5	CO7	L3
24	1KT17ME031	es exergy of an infinitely large heat reservoir change? Why?	5	CO8	L3
25	1KT17ME032	es exergy of a finitely thermal system change? Why? at is a dead state?	5	CO8	L3
26	1KT17ME034	at is the heat interaction of a system at dead state with its surroundings?	5	CO7	L3
		at is the exergy of a system at equilibrium with its surroundings?			
27	1KT17ME035	es exergy represent the amount of work that a real work- producing device delivers?	5	CO8	L3
28	1KT17ME036	es exergy equal to the amount of work that a real work- producing device delivers?	5	CO8	L3
29	1KT18ME401	rgy and entropy are properties of the system alone. Is exergy a property of the system alone?	5	CO7	L3
30	1KT18ME402	es exergy of a system depend on the temperature of the environment?	5	CO8	L3
31	1KT18ME403	the exergy value of a heat source be negative? the exergy value of a heat sink be negative?	5	CO8	L3
32	1KT18ME404	exergy of a heat reservoir different in different environments?	5	CO7	L3
33	1KT18ME405	Consider two geothermal wells whose energy contents are the same. Are the exergies of the two wells the same at different ambient temperature?	5	CO8	L3
34	1KT18ME406	sider a reversible adiabatic process during which no entropy is generated. Does exergy destruction for this process be zero?	5	CO8	L3
35	1KT18ME407	sider an irreversible non-adiabatic process during which no entropy is generated. Does exergy destruction for this process be zero?	5	CO7	L3
36	1KT18ME408	w do you define exergy cycle efficiency of a heat engine?	5	CO8	L3
		he exergy cycle efficiency of a heat pump defined the same as that of a refrigerator?	5	CO8	L3
		w does the exergy cycle efficiency differ from the first law cycle efficiency?	5	CO7	L3
		hsider a refrigerator using R-12 as working fluid. It posses an evaporator temperature of 263 K and a condenser temperature of 315 K. The mass flow rate of the refrigerant is 0.01 kg/s. The surroundings temperature is 298 K. Determine the COP. Calculate the second law cycle efficiency and the exergy cycle efficiency of the refrigerator.	5	CO8	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	deal gases and Real gases	Appr Time:	10 Hrs
9	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Know the nature of gas and properties.	CO9	L3
2	Understand the gas mixtures	CO10	L3
		0010	20
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
41	Ideal gas mixtures, Daltons law of partial pressures.	CO9	L3
42	Amagat's law of additive volumes.	CO9	L3
43	Evaluation of properties of perfect and ideal gases.	CO9	L3
44	Air- Water mixtures and related properties.	CO9	L3
45	Numerical problems.	CO9	L3
46	Real gases-introduction, Van-der Wall's equation of state, Van-der Wall's	CO10	L3
	constants in terms of critical properties.		
47	Beattie-Bridgeman equation.	CO10	L3
48	Law of corresponding states, compressibility factor; compressibility	CO10	L3
	chart.		
49	Difference between ideal and real gases.	CO10	L3
50	Numerical problems.	CO10	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Breathing Mechanics Breathing involves pressure differences between	CO9,	L3
	the inside of the lungs and the air outside.	10	
2		CO10	L3
d	Review Questions	-	_
-	The attainment of the module learning assessed through following questions	-	-
39	State Dalton"s law of partial pressure & Amagat"s law or Law Leduc"s.	CO9	L3
40	Define the following 1. Reduced properties 2. Compressibility factor	CO9	L3
41	State Wan-der waal's equation.	CO9	L3
	1kg mol of oxygen undergoes a reversible non-flow isothermal	CO9	L3
	compression		
	and the volume decreases from 0.2 m3 /kg to 0.08 m3 /kg and the initial		
	temperature is 600C. if the gas obeys Vander waal's equation find a. The		
43	work done during this process The final pressure		
	A tank of 0.1m3 capacity contains 1Kg of O2, 0.9Kg of N2, 1.5 Kg of	CO9	L3
	CO2 and 0.1Kg of CO at 300C. Determine a. The total pressure b. Mole		
43	fraction of each gas c. Gas constant d. Molecular weight		
44	Evaluate properties of perfect and ideal gases.	CO10	L3
45	Write Beattie-Bridgeman equation.	CO10	L3
46	Law of corresponding states, compressibility factor.	CO10	L3
47	Define (i) Partial pressure (ii) Mole fraction	CO10	L3
48	What is Volume fraction of a gas constituent in a mixture.	CO10	L3
e	Experiences	-	-
1		CO10	L2
2		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code	e:	18ME33	Sem:	III	Marks:	30	Time:	75 minut	es	
Cour	rse:	BASIC TH	IERMODY	NAMICS						
-	-	Note: Answe	er all questior	ns, each carry	y equal mark	s.		Marks	СО	Level
1	а	What is a efficiency?	available e ?	nergy, Un	available	energy and	l second la	aw 7	7	L2
	b	Obtain an	expression	for availab	ility of a n	on flow pro	cess.	8	7	L3
					OR					
2	a	Write Max terr	he 7	7	L2					
	b	Derive Cla explain the	nd 8	7	L3					
2		*****					G	-	0	1.0
3	а	With phas substance?	e equilibri	um diagrai	m explain and critical	P-T diagra point.	im for a pu	ire /	8	L2
	b	Vessel of 0.04 m ³ contains a mixture of saturated water and saturated steam at a temperature of 250 ^o C the mass of liquid presen is 9 Kg.Find a)Pressure b)Mass of vapour c)Specific volume d)Enthalpy								L3
		/ 17	,		OR					
4	a	Explain w calorimete	vith neat s r?	ktech a c	ombined s	eperating	and throttli	ng 7	8	L2
	b	Steam is th saturated th also calcul	hrottled from he end of ea ate change	m a pressur xpression, v in entropy	re of 15bar what is dryn during thro	to 1.5bar, interstitution to 1.5bar, interstitution to the second	if steam is d n at beginni	lry 8 ng	8	L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	Crs Code: 17ME33 Sem: III Marks: 5 / 10 Time: 9						90 – 120 minutes				
Course: BASIC THERMODYNAMICS											
Note:	Vote: Each student to answer 2-3 assignments. Each assignment carries equal mark.										
SNo	ι	JSN		Assig	nment Descr	iption		Marks	CO	Level	
1	1KT1	6ME057	State Dalton'	's law of pa	artial pressu	re & Ama	agat''s law or	10	CO9	L2	
			Law Leduc"s	5.							
2	1KT1	6ME006	State Wan-de	er waal's eq	uation.			10	CO10	L2	
3 1KT17ME10 Define the following 1. Reduced properties 2.					10	CO9	L2				
			Compressibil	lity factor							

4	1KT17ME104	1kg mol of oxygen undergoes a reversible non-flow isothermal compression and the volume decreases from 0.2	10	CO9	L2
		m ³ /kg to 0.08 m ³ /kg and the initial temperature is $600C$			
		if the gas obeys Vander waal's equation find a. The work			
		done during this process The final pressure			
5	1KT17ME018	A tank of 0.1m3 capacity contains 1Kg of O2, 0.9Kg of N2.	10	CO9	L3
		1.5 Kg of CO2 and 0.1Kg of CO at 300C. Determine a. The			
		total pressure b. Mole fraction of each gas c. Gas constant			
		d. Molecular weight			
6	1KT17ME019	Write a brief note on: (i) Reduced properties. (ii) Law of	10	CO10	L2
		corresponding states.			
7	1KT17ME020	Define as applied to ideal gas mixtures: (i) Mole fraction	10	CO10	L2
		(ii) Dalton's law of partial pressures. (iii) Relative			
	11/171/17000	humidity.(iv) Due point temperature.	10	<i></i>	1.0
8	TKTT/ME026	Find the gas constant and apparent molar mass of a mixture	10	CO9	L2
		of a mixture of 2 kg 0_2 and 3 kg N_2 , given that universal			
		gas constant is 8514.5 J/kgmoleK. Molar masses of O_2 and N are respectively 22 and 28			
9	1KT18ME005	N ₂ are respectively.52 and 28.	10	CO10	12
		Law Leduc's	10	0010	112
10	1KT18ME005	State Wan-der waal's equation	10	CO9	L3
11	1KT18ME006	Define the following 1. Reduced properties 2.	10	CO10	L2
		Compressibility factor			
12	1KT18ME007	1kg mol of oxygen undergoes a reversible non-flow	10	CO9	L3
		isothermal compression and the volume decreases from 0.2			
		m3 /kg to 0.08 m /kg and the initial temperature is 600C.			
		if the gas obeys Vander waal's equation find a. The work			
		done during this process The final pressure			
13	1KT18ME008	A tank of 0.1m3 capacity contains 1Kg of O2, 0.9Kg of N2,	10	CO9	L3
		1.5 Kg of CO2 and 0.1Kg of CO at 300C. Determine a. The			
		total pressure b. Mole fraction of each gas c. Gas constant			
1.4	1KT18ME000	d. Molecular weight	10	C00	1.2
14	IKI ISME009	write a brief note on: (1) Reduced properties. (11) Law of	10	09	L2
15	1KT18MF011	Corresponding states.	10	CO10	13
15		(ii) Dalton's law of partial pressures (iii) Relative	10	010	L3
		(ii) Dation's law of partial pressures. (iii) Relative			
16	1KT18ME012	Find the gas constant and apparent molar mass of a mixture	10	CO9	L2
		of a mixture of 2 kg Ω_2 and 3 kg N_2 given that universal			
		gas constant is 8314.3 J/kgmoleK. Molar masses of O_2 and			
		N_2 are respectively.32 and 28.			
17	1KT18ME014	State Dalton"s law of partial pressure & Amagat"s law or	10	CO9	L2
		Law Leduc''s.			
18	1KT18ME016	State Wan-der waal's equation.	10	CO9	L2
19	1KT18ME017	Define the following 1. Reduced properties 2.	10	CO10	L2
		Compressibility factor			
20	1KT18ME018	1kg mol of oxygen undergoes a reversible non-flow	10	CO10	L2
		isothermal compression and the volume decreases from 0.2			
		m3 /kg to 0.08 m3 /kg and the initial temperature is 600C.			
		It the gas obeys Vander waal's equation find a. The work			
		aone during this process The final pressure			

21	1KT18ME019	A tank of 0.1m3 capacity contains 1Kg of O2, 0.9Kg of N2, 1.5 Kg of CO2 and 0.1Kg of CO at 300C. Determine a. The total pressure b. Mole fraction of each gas c. Gas constant d. Molecular weight	10	CO10	L2
22	1KT18ME005	Write a brief note on: (i) Reduced properties. (ii) Law of corresponding states.	10	CO10	L2
23	1KT18ME005	Define as applied to ideal gas mixtures: (i) Mole fraction (ii) Dalton's law of partial pressures. (iii) Relative humidity.(iv) Due point temperature.	10	CO9	L3
24	1KT18ME005	Find the gas constant and apparent molar mass of a mixture of a mixture of 2 kg 0_2 and 3 kg N_2 , given that universal gas constant is 8314.3 J/kgmoleK. Molar masses of O_2 and N_2 are respectively.32 and 28.	10	CO10	L2
25	1KT17ME032	State Dalton"s law of partial pressure & Amagat"s law or Law Leduc"s.	10	CO9	L2
26	1KT17ME034	State Wan-der waal's equation.	10	CO9	L2
27	1KT17ME035	Define the following 1. Reduced properties 2. Compressibility factor	10	CO9	L3
28	1KT17ME036	1kg mol of oxygen undergoes a reversible non-flow isothermal compression and the volume decreases from 0.2 m3 /kg to 0.08 m3 /kg and the initial temperature is 600C. if the gas obeys Vander waal's equation find a. The work done during this process The final pressure	10	CO10	L2
29	1KT18ME401	A tank of 0.1m3 capacity contains 1Kg of O2, 0.9Kg of N2, 1.5 Kg of CO2 and 0.1Kg of CO at 300C. Determine a. The total pressure b. Mole fraction of each gas c. Gas constant d. Molecular weight	10	CO10	L2
30	1KT18ME402	Write a brief note on: (i) Reduced properties. (ii) Law of corresponding states.	10	CO9	L2
31	1KT18ME403	Define as applied to ideal gas mixtures: (i) Mole fraction (ii) Dalton's law of partial pressures. (iii) Relative humidity.(iv) Due point temperature.	10	CO10	L2
32	1KT18ME404	Find the gas constant and apparent molar mass of a mixture of a mixture of 2 kg 0_2 and 3 kg N_2 , given that universal gas constant is 8314.3 J/kgmoleK. Molar masses of O_2 and N_2 are respectively.32 and 28.	10	CO9	L2
33	1KT18ME405	Write a brief note on: (i) Reduced properties. (ii) Law of corresponding states.	10	CO10	L2
34	1KT18ME406	Define as applied to ideal gas mixtures: (i) Mole fraction (ii) Dalton's law of partial pressures. (iii) Relative humidity.(iv) Due point temperature.	10	CO9	L2
35	1KT18ME407	Find the gas constant and apparent molar mass of a mixture of a mixture of 2 kg 0_2 and 3 kg N_2 , given that universal gas constant is 8314.3 J/kgmoleK. Molar masses of O_2 and N_2 are respectively.32 and 28.	10	CO9	L2
36	1KT18ME408		10	CO9	L2

F. EXAM PREPARATION

1. University Model Question Paper

Course:		BASIC THE	BASIC THERMODYNAMICS Month							01/01/20
Crs C	ode:	18ME33Sem:IIIMarks:T100								180 minutes
Mod ule	Note	Answer all FI	VE full ques	tions. All que	stions carry equal 1	narks.		Marks	CO	
1	a	State Zeroth law of thermodynamics? Write its importance in (08Marks) thermodynamics.							CO1	L3
	b	A Temperat b where a a and 6.78 at temperature	ture T on a and b are th 0 0 C and for the of	thermomet the constants d 100 0 C to K=2.42.	ric scale is defines. the value of K respectively. C	ned as T=a found to alculate te	In K + be 1.83 mp the	8	CO2	L3
		TTT • • •		0	R			0	001	
-	a	Write the co	orollaries o	of first law t	hermodynamics	5		8	CO1	L3
	b	Air at 1.02 0.015 m3, is compress pressure of 6.8 bar. Calcu done on the m	bar, 220C, sed reversit late i) the fin hass of air in	al temperatur the cylinder.	cupying a cyline abatically by a p e, ii) the final volu	der volume iston to a me, iii) The v	e of work	8	CO2	
2	 a Derive an expression for Pdv work for the following Qausitastic process. a) Constant Volume Process b) Constant Pressure Process c) Isothermal process d) Polytrophic process b Compute the work done by 1 kg of a fluid system as it expands slowly behind a system from an initial pressure of 6x10 5 Pa & initial volume of 0.06m 3 & final volume of 0.18 in the following processes. (i) pressure remains constants (ii) volume remains constants (iii) PV 1.3 = C 				8	C03	L3 L3			
	-	Duerre that ($\frac{1}{1}$				0	<u> </u>	1.2
-	a L	Prove that (COP Heat I	Pump = 1 + 0	1000C is mlass	r d in a late	of	8 0	$\frac{CO3}{CO4}$	L3 L2
	D	water at 100C . Ty joined toget	wo such bl	ocks at 100	0C & 00C respe C=0.393KJ/Kg	ectively are	01 e	ð	04	
3	а	Explain the	various re	asons of irr	eversibility.			8	CO5	L3
	b	A househol Every time introducing in temperat day, and th cost of wor refrigerator	d refrigera the door an averag ure of the e refrigera k is Rs.250 ? The atmo	tor is main is opened e of 420 kJ refrigerato tor operate 0 per kWh. ospheric is a	tained at a temp l, warm materi , but making on r. The door is o as at 15% of the What is the mo at 30 $^{\circ}$ C.	perature of al placed ly a small pened 20 e ideal CC onthly bill	² 2 0 C. inside, change times a DP. The for this	8	CO6	L3

		OR			
-	a	State and prove Clausius theorem	8	CO5	L3
	b	A limp of steel weighting 30 Kg at a temperature of 427 0 C is dropped in 150Kg of oil at 27 0 C . the specific heat of steel and oil are 0.5 kJ/Kg K and 2.5 kJ/Kg K respectively. Estimate the change in entropy of steel , the oil and the system consisting of oil and lump of steel.	8	CO6	L3
4	а	Define the following	8	CO7	L3
•	u	a) available energy b) unavailable energy & c) availability	0	207	
	b	write a short note on Clapeyron equation and Joules- Thomson effect	8	CO8	L3
		OR			
	a	Draw the following diagrams for water and various pressure and name the different regions and states: i) Pressure-temperature diagrams ii) Temperature –volume diagram	8	CO7	L3
	b	Steam at 10bar and 0.95 dry flows at 130m/sec in a pipe. It is throttled to 8bar and the flow rate is 12kg/sec. Assuming velocity in the pipe on the downstream side of the valve is 160m/sec. Find the final condition of team and the pipe diameters before and after the valve.	8	CO8	L3
5		Explain the following law	0	COD	1.2
5	a	a) Dalton''s law of partial pressure: b) Amagat''s law or Law Leduc''s:	0	09	LS
	b	A mixture of the gases has the following volumetric composition CO $2 = 12\%$, O $2 = 4\%$, N $2 = 82\%$, CO $= 2\%$ Calculate a. The gravimetric composition b)Molecular weight of the mixture R for the gas mixture	8	CO10	L3
_	я	Define the following	8	C09	13
_	a	a) Reduced Properties b) Corresponding State c) Compressibility Factor	0		
	b	1kg mol of oxygen undergoes a reversible non-flow isothermal compression and the volume decreases from 0.2 m 3 /kg to 0.08 m 3 /kg and the initial temperature is 60 0 C. if the gas obeys Vander waal's equation find a. The work done during this process b. The final pressure	8	CO10	L3

2. SEE Important Questions

Course:		BASIC THEF	ASIC THERMODYNAMICS						May /2018	
Crs (Code:	18ME33	Sem:	III	Marks:	100	Time:		180	
									minut	es
	Note	Answer all FI	VE full ques	tions. All qu	estions carry	equal marks	s.	-	-	
Modu	Q no.	Important Quest	ion					Marks	CO	Year
le 1				11				10/	COL	2017
1	a	Distinguish be	etween the fo	ollowings wi	in example:			16 /	COI	201//
		i) Macroscopi	c and micros	copic view p	point.			20		18
		iii) Extensive	and intensive	n and control	volume.					
		iv) Thermal e	and intensive	e property.	namic aquilik	rium				
	h	The temperature	unonun al	a merniouy	scale is relat	ad to there	omotric		CO1	2017
	U	nroperty 'Y' k	and tool and a magnetic	t = 1	scale is lefat	vhore A and	$\frac{1}{1}$ B are		COI	2017
		constants The	by the relation \mathbf{x}	M, t = A. 10	be 1.47 and	5.2 of the id	\mathbf{D} are	-		
	and steam point which are assigned the numbers 0 and 100									
		respectively	on Celcius	scale D	etermine th	e temperat	ure 't	,		
		corresponding	to a reading	f of X	cicilinic ui	e temperat	uic i			
		equal to 2.65	, to a reading	017						
	C	State and prov	ve Clausius in	neguality					CO^2	2016
		Show that ent	ropy of an is	olated system	n either incre	eases or in th	he limi	+	CO^2	2016
		remains const	ant	oluced system	ii eitilei iileit			-	002	2010
			unt.							
2	a	Distinguish be	etween heat a	and work in t	thermodynam	nics.		16/	CO3	2016
_	u	Distinguish of						20	005	2010
	b	A spherical ba	alloon has an	initial diam	eter of 25cm	and contair	ns air a	-	CO3	2015
	_	1.2 bar. Beca	use of heatir	ng the diame	eter of the b	alloon incre	ases to			
		30cm and du	ring the he	ating proces	s the pressu	re is found	to be			
		proportional	to the diam	eter. Calcula	ate the worl	k done dur	ing the			
		process.					U			
	с	A gas contain	ed in a cylin	der fitted wi	ith a piston l	oaded with	a smal	l	CO4	2009
		number of we	eights is at 1.	3 bar pressu	re and 0.03m	n3 volume.	The gas	5		
		is heated until	the volume	increases to	0.1m3. Calcu	late the wor	rk done			
		by the gas in t	the following	processes: i) Pressure rea	mains const	ant;			
		ii) Temperatu	re remains c	onstant; iii)	PV1.3 = C	during the p	process			
		Show the proc	cesses on P-V	/ diagram.						
	d	Show that wo	rk and heat a	re path funct	tions.				CO4	2016
		To a closed s	ystem 150 kJ	of work is	done on it. It	f the initial	volume		CO4	2016
		is 0.6 m3 and	pressure of s	ystem varies	s as follows:					
		$\mathbf{P} = (8 - 4\mathbf{V})$), where 'P' i	s pressure in	n bar and `V	' is volume	in m3	•		
		Determine the	e final volum	e and pressu	re of the syst	em.				
3	a	With the he	lp of Joule	es experime	nt, explain	the first	law of	16/	CO5	2016
		thermodynam	ic system. Al	so state its l	imitation.			20		
	b	Show that ene	ergy is a prop	erty of the s	ystem.				CO5	2016
	c	Write down th	ne energy equ	ation for flo	w processes	and reduce f	the		CO6	2018
		same for the f	or the followings							
		with signification	nce:							
		1) Steady flow	energy equa	tion						
		11) Nozzle								
1	1	111) Throttling	device					1		

		iv) Compressor			
		v) Filling of an evacuated tank.			
		State and explain the first law of thermodynamics. Give its equation with reference to a cyclic and non cyclic process.		CO6	2015
4	a	Draw phase equilibrium diagram for water on P-V coordinates and indicate relevant parameters on it.	16 / 20	CO7	2015
	b	Define available and unavailable energy.		CO7	2016
	с	For a non-flow system, show that the heat transferred is equal to the change in enthalpy of a system.		CO8	2017
	d	Draw phase equilibrium diagram for water on P-V coordinates and indicate relevant parameters on it.		CO8	2018
5	а	give the statement of, (i) Dalton's law of additive pressures (ii) Amagat's law of volume additives.	16 / 20	CO9	2009
	b	Write down the Vander Vas " equation of state. How it differs from ideal gas equation .		CO9	2017
	c	Write a brief note on: (i) Reduced properties. (ii) Law of corresponding states.		CO10	2018
	d	Find the gas constant and apparent molar mass of a mixture of a mixture of 2 kg 0_2 and 3 kg N_2 , given that universal gas constant is 8314.3 J/kgmoleK. Molar masses of O_2 and N_2 are respectively.32 and 28.		CO10	2018

G. Content to Course Outcomes

1. TLPA Parameters

Table	1:	TLPA -	Example	e Course

Mo	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment
dul	(Split module content into 2 parts which have	Teaching	Learning	Bloo	Action	n	Methods to
e- #	similar concepts)	Hours	Levels for	ms'	Verbs for	Methods	Measure
			Content	Level	Learning	for	Learning
						Learning	
Α	В	С	D	E	F	G	Н
1	Fundamental Concepts & Definitions:	4	- L1	L2	Understan	- Lecture	- Assignment
	Thermodynamic definition and scope,		- L2		d	-	-
	Microscopic and Macroscopic approaches.					-	-
	Some practical applications of engineering						
	thermodynamic Systems, Characteristics of						
	system boundary and control surface,						
	examples. Thermodynamic properties;						
	Definition and units, intensive, extensive						
	properties, specific properties, pressure,						
	specific volume. Thermodynamic state,						
	state point, state diagram, path and process,						
	quasi-static process, cyclic and non-cyclic;						
	processes.						
1	Zeroth law of thermodynamics.	6	- L2	L2	Understan	- Lecture	- Assignment
	Temperature: concepts, scales, international		- L2		d	-	-
	fixed points and Measurement of					-	-
	temperature Constant volume gas						
	Thermometer constant pressure gas						
	the mean and the m						
	thermometer, mercury in glass thermometer						

	& Numerical problems.						
2	Work and Heat: Mechanics, definition of work and its limitations. Thermodynamic definition of work; Examples, sign Convention. Displacement work; as a part of a system boundary, as a whole of a system boundary. Expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. Numerical problems.	4	- L2 - L2	L2	Understan d	- Lecture -	- Assignment -
2	First Law of Thermodynamics: Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy Extension of the First law to control volume; steady flow energy equation (SFEE), important applications.	6	- L2 - L2	L2	Understan d	- Lecture -	- Assignment -
3	Second Law of Thermodynamics: Limitations of first law of thermodynamics: Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal reservoir, Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation, coefficients of performance. Kelvin-Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics. Equivalence of the two statements; Carnot cycle, Carnot principles. Numerical problems.	4	- L2 - L2	L2	Understan d	- Lecture -	- Assignment -
	Entropy: Clausius inequality, Statement- proof. Entropy- definition, a property, changes of entropy, entropy as a quantitative test for irreversibility. Principle of increase in entropy, entropy as a coordinate. Numerical problem	6	- L2 - L2	L2	Understan d	- Lecture - -	- Assignment - -
4	Availability, Ir-reversibility and General Thermodynamic relations: Introduction, Availability (Energy), Unavailable energy, Relation between increase in unavailable energy and increase in entropy. Maximum work, maximum useful work for a system	5	- L2 - L2	L2	Understan d	- Lecture - -	- Assignment - -

	& control volume, Ir-reversibility, second						
	law efficiency. Numerical problems.						
4	Pure Substances: P-T and P-V diagrams,	5	- L2	L2	Understan	- Lecture	- Assignment
	triple point and critical points. Sub-cooled		- L2		d	-	-
	liquid, saturated liquid, mixture of saturated					-	-
	liquid an water ad vapor, saturated vapor						
	and superheated vapor states of pure						
	substance withs example. Enthalpy of						
	change of phase (Latent heat). Dryness						
	fraction (quality), T-S and H-S diagrams,						
	representation of various processes on these						
	diagrams. Steam tables and its use.						
	Throttling calorimeter, separating and						
	throttling calorimeter. Numerical problems						
5	deal gases:	5	- L2	L2	Understan	- Lecture	- Assignment
	Ideal gas mixtures, Daltons law of partial		- L2		d	-	_
	pressures. Amagat's law of additive					-	-
	volumes. Evaluation of properties of perfect						
	and ideal gases. Air- Water mixtures and						
	related properties. Numerical problems.						
5	Real gases-introduction, Van-der Wall's	5	- L2	L2	Understan	- Lecture	- Assignment
	equation of state, Van-der Wall's constants		- L2		d	-	-
	in terms of critical properties. Beattie-					-	-
	Bridgeman equation. Law of corresponding						
	states, compressibility factor;						
	compressibility chart. Difference between						
	ideal and real gases and Numerical						
	problems.						

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Mo	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
aui	outcome from	from		(what all Learning	(1.Action verb,	
e- #	Study of the	Contort		rappened from the	2. Knowledge,	
	Content or	Content		study of Content /	3.Condition /	Student Should be
	Syllabus			Syllabus. A short word	Methodology,	able to
				for learning or	4.Benchmark)	
				outcome)		
Α	Ι	J	K	L	М	N
1		Thermod	Thermodyna	Analyze system	Understanding	Analyze system
	thermodyna ynamic		mic system		apply Understanding	
	mic systems	system			apply	
	and	and				
	properties.	Temperat				
		ure				
		Scales				
1	Apply the	Conserva	Energy	Analyze the problems	Understanding	Analyze property
	above	tion of	conversion		apply	
	concepts	energy				
	engineering	and				

2	problems. State the first law of	Energy interactio n Nature of thermody	Conservation of energy	Apply SFEE	Understanding apply	Apply sfee to any system
	thermodyna mic system. write an expression for SFE Equation.	namic processes and Thermod ynamic system				
		propertie				
2	Interpret the	Thermod	Energy	Analyze Interaction of	Understanding	Analyze energy
	energy	ynamic	interaction	Energy	apply	interaction-system
	interaction.	relations				
		and Propertie				
		s of				
		substance				
3	Develop the	Ideal gas	Nature of	Analyze process	Understanding	Analyze system
	nature of	propertie	thermodyna		appry	process
	mic process.	Real gas	processes			
	inte processi	propertie	processes			
		S				
3	Illustrate the	Thermod	Thermodyna	Analyze the process		Analyze system
	mic	system	properties			rr
	properties.	propertie	properties			
		S				
4	Apply the	Thermod	Thermodyna	Analyze td relations		Analyze system relation process
	thermodyna mic	ynamic relations	mic relations			relation process
	relations.	relations				
4	Interpret the	Propertie	Properties of	Analyze pure	Understanding	Analyze pure substance
	behavior of	s of	substance	substance	аррту	
	pure substance	substance				
5	Calculate	Ideal gas	Ideal gas	Ranges of pressure	Understanding	Analyze system ideal
	thermodyna	propertie	properties	and temperature	apply	gas
	mic	S				
	properties of					
	all ranges of					
	pressure and					
	temperature.			-		
5	Calculate the	Real gas	Real gas	Analyze gases as ideal and real	Understanding apply	Analyze td relations
	mic	propertie	properties			
	properties of	3				
	real gases at					

all ranges of			
pressure and			
temperature			
using			
modified			
equation.			